Table I. Rates of Acidic Solvolysis of Several Bicyclic Acetals ${ }^{0}$

Acetal	k_{1}, sec^{-1}	Acid concn. $C_{\text {HA }}, M$	Relative reactivity
$\mathbf{2}$	5.3×10^{-3}	6.3×10^{-4}	6.9×10^{5}
$\mathbf{3}$	1.8×10^{-3}	6.3×10^{-3}	2.5×10^{4}
$\mathbf{1}$	1.8×10^{-4}	6.3×10^{-8}	2.5×10^{3}
$\mathbf{7}$	5.8×10^{-5}	6.3×10^{-1}	7.7 (ref 1)
$\mathbf{8}$			1 (ref 1)

tion of the bicyclization technique described above gave 2,7-dioxabicycloheptane 3 in 85% yield (by gc), bp 47° (30 mm). It could also be made from 2 -methoxy-5-hydroxytetrahydropyran ${ }^{5}$ (6) in 39% yield.

Tremendous differences in reactivity among these compounds were indicated by measurements of their rates of acid-catalyzed solvolysis (Table I). In the series 2, 3, 1, 6,8-dioxabicyclo[3.2.1]octane (7), and dimethyl acetal (8), the half-lives increased by a factor of $>10^{2}$ as the total acid concentration was increased by a factor of 10^{3}. The approximate relative reactivities under these conditions thus span more than five powers of ten. These differences are traceable to ring strain and anomeric effect. Work is currently under way to establish the respective contributions of undissociated acid and of oxonium ion.

These new monomers are expected to be of interest in studies of polymerization to polysaccharide analogs, ${ }^{1,2,7}$ the thermochemistry of acetals, ${ }^{8}$ and the study of acetal solvolysis mechanisms and lysozyme action. ${ }^{9}$

Acknowledgment. We are greatly indebted to the National Institutes of Health, Grant No. GM-18595, for support of this work.

References and Notes

(1) H. K. Hall, Jr., L. J. Carr, R. Kellman, and Fr. DeBlauwe, J. Amer. Chem. Soc., 96, 7265 (1974).
(2) Reviews: C, Schuerch, Advan. Polym. Sci., 10, 173 (1972); Accounts Chem. Res., 6, 184 (1973).
(3) All new compounds in this investlgation gave satisfactory C and H analyses and nmr, ir, and mass spectra and were pure by gas chromatography.
(4) C. C. Price and R. B. Balsley, J. Org. Chem., 31, 3406 (1966).
(5) R. M. Srivastava and R. K. Brown, Can. J. Chem., 48, 2334 (1970).
(6) Conditions: temperature 35°; dichloracetic acid catalyst; solutions are initially 1.25 M in acetal in solvent 0.6 ml acetone $-\alpha_{6}$ and $0.2 \mathrm{ml} \mathrm{D}_{2} \mathrm{O}$; rates followed by monitoring $\mathrm{C}_{1} \mathrm{H}$ nmr absorption intensity $\left(\mathrm{C}_{5} \mathrm{H}\right.$ for 7) as a function of time. Good pseudo-first-order plots were obtained.
(7) H. K. Hall, Jr., and M. J. Steuck, J. Polym. Sci., Part A-1, 11, 1035 (1973).
(8) M. Mansson, J. Chem. Thermodyn., 1, 141 (1969), and related articles.
(9) Review: T. H. Flfe, Accounts Chem. Res., 5, 764 (1972).

H. K. Hall, Jr., * Fr. DeBlauwe
 Department of Chemistry, University of Arizona
 Tucson, Arizona 85721
 Received September 28, 1974

A Platinum(II) Complex Containing a Metallodithiocarboxylate Ligand

Sir:
Although thiocarbonyl complexes of several metals are now known, ${ }^{1}$ none has been reported for $\mathrm{Pt}(\mathrm{II})$. In our at-
tempts to prepare such a complex, we not only found evidence for the formation of a reactive platinum thiocarbonyl complex but also observed that it is slowly converted into a very stable $\mathrm{Pt}(\mathrm{II})$ complex containing the novel metallodithiocarboxylate bidentate ligand, the first ligand of this type to be observed. The molecular structure of the complex has been established by an X-ray crystallographic investigation.

When 0.46 g of trans $\left.-\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})[\mathrm{C}=\mathrm{S}) \mathrm{OMe}\right]^{2 \mathrm{a}}$ in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred under 1 atm of BF_{3} for 18 hr at 25°, the solution changed from pale to deep yellow. The BF_{3} and solvent were removed under a stream of N_{2} leaving a yellow oil which solidified on gently warming under vacuum. While attempts to recrystallize and purify the solid yielded only oils, the compound did exhibit a strong band in its infrared spectrum at $1400 \mathrm{~cm}^{-1}$ in a position characteristic of the thiocarbonyl ligand; ${ }^{1}$ it also exhibited a broad absorption at $1050 \mathrm{~cm}^{-1}$ typical of the BF_{4} - ion. This evidence together with the presence of only phenyl proton resonances in its pmr spectrum suggested that the compound could be formulated as $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{BF}_{4}{ }^{2 \mathrm{~b}}$ While $\mathrm{C}, \mathrm{H}, \mathrm{Cl}, \mathrm{S}$, and F analyses of the compound were close to this composition, they were not satisfactory. That $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{BF}_{4}$ was the predominant compound in the solid, however, was supported by its ready reaction with MeOH and $\mathrm{Me}_{2} \mathrm{NH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 25° to give the following known and expected ${ }^{3}$ products in $60-70 \%$ yield.

When a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the impure $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{BF}_{4}$ was shaken with a small amount of $\mathrm{H}_{2} \mathrm{O}$, the $1400-\mathrm{cm}^{-1}$ absorption of the CS ligand disappeared and a new band appeared at $2115 \mathrm{~cm}^{-1}$. The position of this product band was identical with that of a sample of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CO})\right] \mathrm{BF}_{4}$ prepared by a different route. ${ }^{5}$

$$
\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})^{+}+\underset{2}{ } \mathrm{H}_{2} \mathrm{O} \underset{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CO})^{+}+\mathrm{H}_{2} \mathrm{~S}}{\longrightarrow}
$$

This reaction presumably proceeds via $\mathrm{H}_{2} \mathrm{O}$ attack at the thiocarbonyl carbon atom as proposed for the conversion of the CS ligand in $\mathrm{W}(\mathrm{CO})_{5}(\mathrm{CS})$ into a $\mathrm{C} \equiv \mathrm{NR}$ group on reaction with primary amines. ${ }^{6}$ Even the solid $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{BF}_{4}$ undergoes slow hydrolysis according to eq 2 when exposed to the atmosphere for several hours.

If a solution of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{BF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane is allowed to stand under an air atmosphere at 25° for 1 to 2 days, air-stable yellow crystals ($35-40 \%$ yield) suitable for X-ray analysis are formed. When recrystallized from acetonitrile-ethyl ether, the compound analyzes correctly for $\left[\mathrm{Cl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mathrm{CS}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$. Anal. Calcd: C , 53.3; H, 3.65; Cl, 2.16; S, 3.91. Found: C, 52.6; H, 3.51; Cl, 1.69; S, 4.12. The compound is stable on heating in air up to its melting point, $258-261^{\circ}$. It is a $1: 1$ electrolyte in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution and exhibits a broad band at $1050 \mathrm{~cm}^{-1}$ in its infrared spectrum characteristic of the $\mathrm{BF}_{4}{ }^{-}$anion.

The crystal used for the structure determination of this compound contained approximately 0.2 mol of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per mole of complex. Data were collected on a fully automated Syntex $\mathrm{P} 2_{1}$ four-circle diffractometer using monochromatic $\mathrm{CuK} \alpha(1.5418 \AA)$ radiation. There are four molecules of complex in the unit cell which belongs to the common space group $P 2_{1} / c$. Diffractometer measured cell constants for the monoclinic unit cell are $a=15.577$ (1), $b=16.539$ (3),

Figure 1. A computer generated perspective drawing of $\left[\mathrm{Cl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mathrm{CS}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4} \cdot 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The phenyl carbons of the PPh_{3} groups have been omitted for clarity.
and $c=27.190$ (2) \AA and $\beta=95.061$ (7) ${ }^{\circ}$. A total of 5351 reflections were judged observed after correction for Lorentz, polarization, and background effects. All 90 nonhydrogen atoms were located using heavy atom methods. Fullmatrix least-squares refinement ${ }^{7}$ varying positional and anisotropic thermal parameters for the atoms of the complex and positional and occupancy parameters for the solvent converged to the present discrepancy index of 0.07 .
The computer generated drawing (Figure 1) of the dimeric cation shows a square-planar geometry about each of the platinum atoms with the two planes being perpendicular $\left(89.97^{\circ}\right.$) to each other. Donor groups to $\mathrm{Pt}(2)$ involve $\mathrm{P}(3)$ and $\mathrm{P}(4)$ of the two $\mathrm{Ph}_{3} \mathrm{P}$ ligands and two sulfur atoms of the metallodithiocarboxylate ligand, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{Cl}) \mathrm{Pt}\left(\mathrm{CS}_{2}^{-}\right)$. Structurally this ligand is similar to the familiar dithio acid ($\mathrm{R}-\mathrm{CS}_{2}{ }^{-}$), xanthate $\left(\mathrm{RO}-\mathrm{CS}_{2}{ }^{-}\right.$), and dithiocarbamate $\left(\mathrm{R}_{2} \mathrm{~N}-\mathrm{CS}_{2}{ }^{-}\right.$) ligands. ${ }^{8,9}$ The $\mathrm{Pt}(2)-\mathrm{S}(1), 2.353$ (5) \AA, and $\mathrm{Pt}(2)-\mathrm{S}(2), 2.361$ (5) \AA, bond distances are similar to an average value of $2.32 \AA$ reported for the $\mathrm{Pt}-\mathrm{S}$ bond distances in the dithiocarbamate complex, $\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{P} .{ }^{10}$ The $\mathrm{S}(1)-\mathrm{Pt}(2)-\mathrm{S}(2)$ bond angle is 72.4 (2) ${ }^{\circ}$ as compared to 75.5° for the analogous angle in the above-mentioned dithiocarbamate complex. The C(1)-S(1), 1.709 (21) \AA, and $\mathrm{C}(1)-\mathrm{S}(2), 1.692$ (20) \AA, bond distances and the $\mathrm{S}(1)-$ $\mathrm{C}(1)-\mathrm{S}(2)$ bond angle (109.9 (9) ${ }^{\circ}$) are very similar to related parameters reported ${ }^{8,9}$ for a variety of dithiocarbamate and xanthate complexes. The $\mathrm{Pt}(1)-\mathrm{C}(1)$ bond distance (1.950 (15) \AA) is among the shortest $\mathrm{Pt}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ distances known. In the Pt -carbene complexes where this bond might be expected to be shortened due to multiple bonding, the values ${ }^{11-13}$ range from 1.98 to $2.13 \AA$. For the complex cis $-\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)[\mathrm{C}(\mathrm{OMe})(\mathrm{NHPh})]$ where the bond distance ${ }^{14}$ is 1.98 (2) \AA, Cotton and Lukehart ${ }^{13}$ have estimated a $\mathrm{Pt}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bond order of 1.2 suggesting the presence of some Pt to $\mathrm{C} \pi$-bonding. The shortness $(1.95 \AA$) of the $\mathrm{Pt}(1)-\mathrm{C}(1)$ bond in the metallodithiocarboxylate ligand suggests Pt to $\mathrm{C} \pi$-bonding occurs here as well. Further structural details can be found in Tables I-III (supplementary material).

While we have not been able to definitively establish the path which leads from the impure $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{BF}_{4}$ to the metallodithiocarboxylate complex, a possible route is one which involves initial slow hydrolysis (eq 2) of the reactive thiocarbonyl complex by small amounts of atmospheric moisture. This could be followed by attack of $\mathrm{H}_{2} \mathrm{~S}$ produced in reaction 1 on unreacted thiocarbonyl complex (eq 3). The resulting metallodithiocarboxylate ligand could then react (eq 4) with the carbonyl complex generated in reaction 1 to

$$
\begin{align*}
& \left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})^{+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \\
& \left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{CS}_{2}^{-}\right)+2 \mathrm{H}^{+} \tag{3}\\
& \left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{CS}_{2}^{-}\right)+\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CO})^{+} \longrightarrow \\
& \quad\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{Cl}) \mathrm{Pt}\left(\mathrm{CS}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-}+\mathrm{CO} \tag{4}
\end{align*}
$$

give the dimeric product. Support for reaction 3 derives from the mechanism postulated for the reaction of $\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CO})^{+}$with $\mathrm{H}_{2} \mathrm{O}$ to form CO_{2} and $\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} 2 \mathrm{Pt}(\mathrm{Cl}) \mathrm{H}$. It involves $\mathrm{H}_{2} \mathrm{O}$ attack at the carbonyl carbon atom. ${ }^{15}$ In the formation of the metallodithiocarboxylate complex, the concentration of $\mathrm{H}_{2} \mathrm{O}$ is important. At high concentrations, only the carbonyl complex is produced as noted above (eq 2). Very low concentrations presumably allow reactions 3 and 4 to occur, resulting in the formation of the dimeric product.

The unusually high stability of this metallodithiocarboxylate complex suggests that it will be possible to synthesize other complexes bearing this general type of ligand.

Supplementary Material Available. The fractional coordinates (Table 1), bond distances (Table 11). and important bond angles (Table 111) will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche ($105 \times 148 \mathrm{~mm}$, $24 \times$ reduction. negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D.C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JACS-75-656.

References and Notes

(1) I. S. Butler and A. E. Fenster, J. Organometal. Chem., 66, 161 (1974).
(2) (a) E. D. Dobrzynski and R. J. Angelici, submitted for publication. (b) Very recently a closely related complex, $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{Cl}$, was postulated to form in the reaction of $\mathrm{Pt}(0)$-phosphine complexes with thiophosgene. It was extremely unstable and was characterized only by its $1400 \mathrm{~cm}^{-1}$ infrared absorption. M. Kubota and C. J. Curtis, Inorg. Chem., 13, 2277 (1974).
(3) L. Busetto, M. Graziani, and U. Belluco, Inorg. Chem., 10, 78 (1971).
(4) C. R. Green and R. J. Angelici, Inorg. Chem., 11, 2095 (1972).
(5) H. C. Clark, K. R. Dixon and W. J. Jacobs, J. Amer. Chem. Soc., 90, 2259 (1968).
(6) B. D. Dombek and R. J. Angelici, J. Amer. Chem. Soc.. 95, 7516 (1973).
(7) The following library of crystallographic programs was used: C. R. Hubbard, C. O. Quicksall, and R. A. Jacobson, "The Fast Fourier Algorithm and the programs ALFF, ALFFDP, ALFFT and FRIEDEL," USAEC Report IS-2625, lowa State University-Institute for Atomic Research, Ames, lowa, 1971; W. R. Busing, K. O. Martin, and H. A. Levy, "A Fortran Crystallographic Least Squares Program," USAEC Report ORNL-TM305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965; C. Johnson, "ORTEP. A Fortran Thermal-Ellipsoid Plot Program," U.S. Atomic Energy Commission Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965.
(8) D. Coucouvanis, Progr. Inorg. Chem., 11, 233 (1970).
(9) R. Eisenberg, Progr. Inorg. Chem., 12, 295 (1970).
(10) A. Z. Amanov, G. A. Kukina, and M. A. Porai-Koshits, Zh. Strukt. Khim., 8 (1), 174 (1967).
(11) D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Chem. Rev., 72, 545 (1972).
(12) R. F. Stepaniak and N. C. Payne, J. Organometal. Chem., 57, 213 (1973).
(13) F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., 16, 487 (1972).
(14) E. M. Badley, J. Chatt, and R. L. Richards, J. Chem. Soc. A, 21 (1971).
(15) H. C. Clark and W. J. Jacobs, Inorg. Chem., 9, 1229 (1970).

James M. Lisy, Edward D. Dobrzynski Robert J. Angelici,* Jon Clardy*
Ames, Laboratory-USAEC and Department of Chemistry Iowa State University Ames, Iowa 50010
Received November 6, 1974

On the Alleged Intermediacy of a Silacyclopropane in the Pyrolysis of Phenyltrimethylsilyldiazomethane

Sir:

The synthesis, isolation, and characterization of the long elusive silacyclopropane ring system by Seyferth ${ }^{1}$ can be expected to remove inhibitions from the proposal of such compounds as reactive intermediates. Earlier this year Ando

